

M : 9425109601,9425110860

General Instructions

1. This question paper contains three sections $-A, B$ and C. Each part is compulsory.
2. Section-A has $\mathbf{2 0}$ MCQs, attempt any 16 out of 20.
3. Section-B has 20 MCQs, attempt any 16 out of 20.
4. Section-C has $\mathbf{1 0}$ MCQs, attempt any $\mathbf{8}$ out of 10 .
5. All questions carry equal marks.
6. There is no negative marking.

SECTION-A

In this section, attempt any 16 questions out of questions 1-20. Each question is of 1 mark weightage.

1. If R is a relation in a set A such that $(a, a) \in R$ for every $a \in A$, then the relation R is called
(a) symmetric
(b) reflexive
(c) transitive
(d) symmetric or transitive
2. If matrix $A=\left[a_{i j}\right]_{2 \times 2}$, , where $a_{i j}=\left\{\begin{array}{lll}1 & \text { if } & i \neq j \\ 0 & \text { if } & i=j\end{array}\right.$, then A^{2} is equal to
(a) I
(b) A
(c) O
(d) None of these
3. The value of $\left|\begin{array}{lll}a-b & b+c & a \\ b-a & c+a & b \\ c-a & a+b & c\end{array}\right|$ is
(a) $a^{3}+b^{3}+c^{3}$
(b) $3 b c$
(c) $a^{3}+b^{3}+c^{3}-3 a b c$
(d) None of these
4. The function $f(x)=2 x^{3}-3 x^{2}-12 x+4$, has
(a) two points of local maximum
(b) two points of local minimum
(c) one maxima and one minima
(d) no maxima or minima
5. If $|x-1|>5$, then
(a) $x \in(-4,6)$
(b) $x \in[-4,6]$
(c) $x \in(-\infty,-4) \cup(6, \infty)$
(d) $x \in(-\infty,-4) \cup(6, \infty)$
6. The maximum value of $\sin x \cdot \cos x$ is
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\sqrt{2}$
(d) $2 \sqrt{2}$

Target Mathematics by- Dr.Agyat Gupta
7. Let A, B and C are three matrices of same order. Now, consider the following statements
I. If $A=B$, then $A C=B C$
II. If $\mathrm{AC}=\mathrm{BC}$, then $\mathrm{A}=\mathrm{B}$

Choose the correct option
(a) Only I is true
(b) Only II is true
(c) Both I and II are true
(d) Neither I nor II is true
8. If the area of a triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 sq. units. Then, the value of k will be
(a) 9
(b) 3
(c) -9
(d) 6
9. Let R be a relation on the set A of ordered pairs of positive integers defined by $(x, y) R(u, v)$, if and only if $x v=y u$. Then, R is
(a) reflexive
(b) symmetric
(c) transitive
(d) an equivalence relation
10. The value of $\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|$ is
(a) $9 x^{2}(x+y)$
(b) $9 y^{2}(x+y)$
(c) $3 y^{2}(x+y)$
(d) $7 x^{2}(x+y)$
11. The function $f(x)=x^{x}$ has a stationary point at
(a) $x=e$
(b) $x=\frac{1}{e}$
(c) $x=1$
(d) $x=\sqrt{e}$
12. If $|x+2| \leq 9$, then
(a) $x \in(-7,11)$
(b) $x \in[-11,7]$
(c) $\mathrm{x} \in(-\infty,-7) \cup(11, \infty)$
(d) $\mathrm{x} \in(-\infty,-7) \cup[11, \infty)$
13. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is
(a) e
(b) e^{e}
(c) $\mathrm{e}^{\frac{1}{\mathrm{e}}}$
(d) $\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{\mathrm{e}}}$
14. If A and B are 2×2 matrices, then which of the following is true?
(a) $(\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB}$
(b) $(\mathrm{A}-\mathrm{B})^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB}$
(c) $(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B})=\mathrm{A}^{2}+\mathrm{AB}-\mathrm{BA}-\mathrm{B}^{2}$
(d) $(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B})=\mathrm{A}^{2}-\mathrm{B}^{2}$
15. If $\left|\begin{array}{cc}2 x & 5 \\ 8 & x\end{array}\right|=\left|\begin{array}{cc}6 & -2 \\ 7 & 3\end{array}\right|$, then the value of x is
(a) 3
(b) ± 3
(c) ± 6
(d) 6
16. The function $f(x)=\tan x-x$
(a) always increases
(b) always decreases
(c) never increases
(d) sometimes increases and sometimes decreases

17. For the set $A=\{1,2,3\}$, define a relation R in the set A as follows $R=\{(1,1),(2,2),(3,3),(1,3)\}$. Then, the ordered pair to be added to R to make it the smallest equivalence relation is
(a) $(1,3)$
(b) $(3,1)$
(c) $(2,1)$
(d) $(1,2)$
18. The equation of the normal to the curve $y^{4}=a x^{3}$ at (a, a) is
(a) $x+2 y=3 a$
(b) $3 x-4 y+a=0$
(c) $4 x+3 y=7 a$
(d) $4 x-3 y=0$
19. If A is an invertible matrix of order 2 , then $\operatorname{det} .\left(\mathrm{A}^{-1}\right)$ is equal to :
(a) det (A)
(b) $\frac{1}{\operatorname{det} .(\mathrm{A})}$
(c) 1
(d) 0
20. The equation of the tangent to curve $y=b e^{-x / a}$ at the point where it crosses y-axis is
(a) $a x+b y=1$
(b) $a x-b y=1$
(c) $\frac{x}{a}-\frac{y}{b}=1$
(d) $\frac{x}{a}+\frac{y}{b}=1$

SECTION-B

In this section, attempt any 16 questions out of the questions 21-40. Each question is of 1 mark weightage.
21. If A and B are two matrices such that $A+B$ and $A B$ are both defined, then
(a) A and B are two matrices not necessarily of same order.
(b) A and B are square matrices of same order.
(c) Number of columns of $\mathrm{A}=$ Number of rows of B .
(d) None of these.
22. If $f(x)=\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|$, then
(a) $f(a)=0$
(b) $f(b)=0$
(c) $f(0)=0$
(d) $\mathrm{f}(1)=0$
23. Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{R}=\{(1,2),(2,3)\}$ be a relation in A . Then, the minimum number of ordered pairs may be added, so that R becomes an equivalence relation, is
(a) 7
(b) 5
(c) 1
(d) 4
24. The inequality representing the following graphs is

(a) $|x|<5$
(b) $|x| \leq 5$
(c) $|x|>5$
(d) $|x| \geq 5$

Target Mathematics by- Dr.Agyat Gupta

Dr. AGYAT GUPTA MOB: 9425109601

25. The maximum value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1+\cos \theta & 1 & 1\end{array}\right|$ is $(\theta$ is real number $)$
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) $\frac{2 \sqrt{3}}{4}$
26. If $A=\left|\begin{array}{ccc}2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{array}\right|$, then A^{-1} exists, if
(a) $1=2$
(b) $1 \neq 2$
(c) $1 \neq-2$
(d) None of these
27. Solution of a linear inequality in variable x is represented on number line is

(a) $x \in(-\infty, 5)$
(b) $x \in(-\infty, 5]$
(c) $x \in[5, \infty)$
(d) $x \in(5, \infty)$
28. If there are two values of a which makes determinant,
$\Delta=\left|\begin{array}{ccc}1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2 a\end{array}\right|=86$, then the sum of these numbers is
(a) 4
(b) 5
(c) -4
(d) 9
29. The slope of tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at the point $(2,-1)$ is :
(a) $\frac{22}{7}$
(b) $\frac{6}{7}$
(c) $\frac{-6}{7}$
(d) -6
30. If $A=\left(\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right)$ and $B=\left(\begin{array}{ll}4 & 1 \\ 7 & 2\end{array}\right)$ then which statement is true?
(a) $\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$
(b) $\mathrm{BB}^{\mathrm{T}}=\mathrm{I}$
(c) $\mathrm{AB} \neq \mathrm{BA}$
(d) $(\mathrm{AB})^{\mathrm{T}}=\mathrm{I}$
31. Let $A=\{1,2,3\}$. Then find the number of relations containing $(1,2)$ and $(1,3)$, which are reflexive and symmetric but not transitive, is
(a) 1
(b) 2
(c) 3
(d) 4
32. If A and B are invertible matrices, then which of the following is not correct?
(a) $\operatorname{adj} \mathrm{A}=|\mathrm{A}| \cdot \mathrm{A}^{-1}$
(b) $\operatorname{det}(\mathrm{A})^{-1}=[\operatorname{det}(\mathrm{A})]^{-1}$
(c) $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
(d) $(\mathrm{A}+\mathrm{B})^{-1}=\mathrm{B}^{-1}+\mathrm{A}^{-1}$
33. The normal to the curve $x=a(1+\cos \theta), y=a \sin \theta$ at ' θ ' always passes through the fixed point
(a) (a, a)
(b) $(0, \mathrm{a})$
(c) $(0,0)$
(d) $(a, 0)$
34. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then $A+A^{\prime}=I$, if the value of α is
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{3}$
(c) π
(d) $\frac{3 \pi}{2}$
35. If the constraints in a linear programming problem are changed
(a) The problem is to be re-evaluated
(b) Solution is not defined
(c) The objective function has to be modified
(d) The change in constraints is ignored
36. The slope of the normal to the curve $y^{3}-x y-8=0$ at the point $(0,2)$ is equal to
(a) -3
(b) -6
(c) 3
(d) 6
37. If there are two values of a which makes determinant,
$\Delta=\left|\begin{array}{ccc}1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2 a\end{array}\right|=86$, then the sum of these numbers is
(a) 4
(b) 5
(c) -4
(d) 9
38. If the number of available constraints is 3 and the number of parameters to be optimized is 4 , then
(a) The objective function can be optimized
(b) The constraint are short in number
(c) The solution is problem oriented
(d) None of these
39. The curve $y-e^{x y}+x=0$ has a vertical tangent at
(a) $(1,1)$
(b) $(0,1)$
(c) $(1,0)$
(d) no point
40. If A is any square matrix, then which of the following is skew-symmetric?
(a) $\mathrm{A}+\mathrm{A}^{\mathrm{T}}$
(b) $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$
(c) AA^{T}
(d) $\mathrm{A}^{\mathrm{T}} \mathrm{A}$

SECTION-C

In this section, attempt any 8 questions. Each question is of 1 mark weightage. Questions $46-50$ are based on a case-study.
41. Let $f(x)= \begin{cases}3 x-4, & 0 \leq x \leq 2 \\ 2 x+\ell, & 2<x \leq 9\end{cases}$

If f is continuous at $\mathrm{x}=2$, then what is the value of ℓ ?
(a) 0
(b) 2
(c) -2
(d) -1
42. If $\mathrm{f}(\mathrm{x})=\frac{\sqrt{4+\mathrm{x}}-2}{\mathrm{x}}, \mathrm{x} \neq 0$ be continuous at $\mathrm{x}=0$, then $\mathrm{f}(0)=$
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) 2
(d) $\frac{3}{2}$
43. If the function $f(x)=\left\{\begin{array}{ccc}1, & x \leq 2 \\ a x+b & , & 2<x<4 \\ 7, & x \geq 4\end{array}\right.$ is continuous at $x=2$ and 4 , then the values of a and b are.
(a) $\mathrm{a}=3, \mathrm{~b}=-5$
(b) $\mathrm{a}=-5, \mathrm{~b}=3$
(c) $\mathrm{a}=-3, \mathrm{~b}=5$
(d) $\mathrm{a}=5, \mathrm{~b}=-3$
44. The number of solutions of the equation $3 \tan x+x^{3}=2$ in $\left(0, \frac{\pi}{4}\right)$ is
(a) 1
(b) 2
(c) 3
(d) infinite

Target Mathematics by- Dr.Agyat Gupta Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : $9425109601(\mathrm{P})$

THRA:T ITATHENTIICS

45. The difference between greatest and least value of $f(x)=2 \sin x+\sin 2 x, x \in\left[0, \frac{3 \pi}{2}\right]$ is -
(a) $\frac{3 \sqrt{3}}{2}$
(b) $\frac{3 \sqrt{3}}{2}-2$
(c) $\frac{3 \sqrt{3}}{2}+2$
(d) None of these

Case Study

A teacher prepared a performance grade criteria for +2 students on the basis of the numbers of x hours devoted by the students.
$f(x)=\left\{\begin{array}{c}1, \text { if } \quad x \leq 3 \\ a x+b, \text { if } 3<x<5 \\ 7, \text { if } \quad x \geq 5\end{array} \Rightarrow\left\{\begin{array}{c}\text { Grade 1, unsatisfactory } x \leq 3 \\ \text { Grade (ax }+ \text { b), satisfactory } x=4 \\ \text { Grade 7, Average } x \geq 5\end{array}\right.\right.$
Based on the above information answer the following :
46. If $f(x)$ is continuous at $x=3$ then relation between a and b is
(a) $5 a+b=7$
(b) $3 \mathrm{a}+\mathrm{b}=1$
(c) $5 \mathrm{a}+\mathrm{b}=1$
(d) $3 a+b=7$
47. If $f(x)$ is continuous at $x=5$ then relation between a and b is
(a) $5 \mathrm{a}+\mathrm{b}=7$
(b) $5 \mathrm{a}+\mathrm{b}=1$
(c) $3 \mathrm{a}+\mathrm{b}=7$
(d) $3 \mathrm{a}+\mathrm{b}=1$
48. The value of a and b are
(a) 2,5
(b) 3,8
(c) $3,-8$
(d) 8,3
49. If satisfactory level is $x=4$ then grade is
(a) 4
(b) 1
(c) 7
(d) 0
50. If satisfactory level is $x=10$ then grade is
(a) 4
(b) 1
(c) 0
(d) 7
*********************** * * * *

Sample Paper

ANSWER KEYS																			
1	(b)	6	(b)	11	(b)	16	(a)	21	(b)	26	(d)	31	(a)	36	(b)	41	(c)	46	(b)
2	(a)	7	(a)	12	(b)	17	(b)	22	(c)	27	(d)	32	(d)	37	(c)	42	(b)	47	(a)
3	(d)	8	(b)	13	(c)	18	(c)	23	(a)	28	(c)	33	(d)	38	(b)	43	(a)	48	(c)
4	(c)	9	(d)	14	(c)	19	(b)	24	(a)	29	(b)	34	(b)	39	(c)	44	(a)	49	(a)
5	(c)	10	(b)	15	(c)	20	(d)	25	(a)	30	(d)	35	(a)	40	(b)	45	(c)	50	(d)

SOLUTIONS

1. (b) A relation R in a set A is called reflexive, if $(a, a) \in R$ for every $a \in A$.
2. (a) $\mathrm{a}_{11}=0, \mathrm{a}_{12}=1, \mathrm{a}_{21}=1, \mathrm{a}_{22}=0$
$\therefore A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\therefore \quad \mathrm{A}^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0+1 & 0+0 \\ 0+0 & 1+0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
3. (d) 4. (c)
4. (c) Since, $|x-1|>5$ So, $(x-1)<-5$ or $(x-1)>5$

$$
[|x|>a \Rightarrow x<-a \text { or } x>a]
$$

Therefore, $x<-4$ or $x>6$
Hence, $x \in(-\infty,-4) \cup(6, \infty)$
6. (b)
7. (a) For three matrices A, B and C of the same order, if $\mathrm{A}=\mathrm{B}$, then $\mathrm{AC}=\mathrm{BC}$ but the converse is not true.
8. (b)
9. (d) Clearly, (x, y) $R(x, y) \forall(x, y) \in A$, since $x y=y x$. This shows that R is reflexive. Further (x, y) $R(u, v)$
$\Rightarrow \quad \mathrm{xv}=\mathrm{yu}$
$\Rightarrow \quad u y=v x$ and hence $(u, v) R(x, y)$. This shows that R is symmetric. Similarly, $(x, y) R(u, v)$ and (u, v) $R(a, b)$.
$\Rightarrow x v=y u$ and $u b=v a \Rightarrow x v \frac{a}{u}=y u \frac{a}{u} \Rightarrow x v \frac{b}{v}=y u \frac{a}{u}$
$\Rightarrow \quad x b=y a$ and hence $(x, y) R(a, b)$. Therefore, R is transitive.

Thus, R is an equivalence relation.
10. (b)
11. (b) Since, $f(x)=x^{x}$

Suppose $y=x^{x} \quad \therefore \log y=x \log x$
After differentiating w.r.t. x, we get
$\frac{1}{y} \frac{d y}{d x}=x\left(\frac{1}{x}\right)+\log x$ So, $\frac{d y}{d x}=(1+\log x) x^{x}$
Now, $\frac{d y}{d x}=0 \Rightarrow(1+\log x) \cdot x^{x}=0$
$\Rightarrow \quad \log x=-1 \Rightarrow x=e^{-1}=\frac{1}{e}$
Hence, $f(x)$ has a stationary point at $x=\frac{1}{e}$
12. (b) Given, $|x+2| \leq 9$
$\Rightarrow-9 \leq x+2 \leq 9$
$\Rightarrow \quad-11 \leq x \leq 7$
13. (c)
14. (c) Given that, A and B are 2×2 matrices.
$\therefore(\mathrm{A}-\mathrm{B}) \times(\mathrm{A}+\mathrm{B})=\mathrm{A} \times \mathrm{A}+\mathrm{A} \times \mathrm{B}-\mathrm{B} \times \mathrm{A}-\mathrm{B} \times \mathrm{B}$
$=A^{2}-B^{2}+A B-B A$
$\Rightarrow(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B})=\mathrm{A}^{2}+\mathrm{AB}-\mathrm{BA}+\mathrm{B}^{2}$
15. (c) 16. (a)
17. (b) The given relation is $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,3)\}$ on the set $\mathrm{A}=\{1,2,3\}$.
Clearly, R is reflexive and transitive.
To make R symmetric, we need $(3,1)$ as $(1,3) \in \mathrm{R}$.
\therefore If $(3,1) \in \mathrm{R}$, then R will be an equivalence relation. Hence, $(3,1)$ is the single ordered pair which needs to be added to R to make it the smallest equivalence relation.
18. (c)
19. (b) $|\mathrm{A}| \neq 0$
$\Rightarrow \mathrm{A}^{-1}$ exists $\Rightarrow \mathrm{AA}^{-1}=\mathrm{I} \Rightarrow\left|\mathrm{AA}^{-1}\right|=|\mathrm{I}|=1$
$\Rightarrow \quad|\mathrm{A}|\left|\mathrm{A}^{-1}\right|=1 \quad\left|\mathrm{~A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}$
Hence option (b) is correct.
20. (d) Curve is $y=b e^{-x / a}$

Since the curve crosses y-axis (i.e., $x=0$) $\therefore y=\mathrm{b}$
Now $\frac{d y}{d x}=\frac{-b}{a} e^{-x / a}$. At point $(0, b),\left(\frac{d y}{d x}\right)_{(0, b)}=\frac{-b}{a}$
\therefore equation of tangent is, $y-b=\frac{-b}{a}(x-0)$
$\Rightarrow \frac{x}{a}+\frac{y}{b}=1$.
21. (b) $A+B$ is defined $\Rightarrow A$ and B are of same order.

Also $A B$ is defined \Rightarrow
Number of columns in $\mathrm{A}=$ Number of rows in B
Obviously, both simultaneously mean that the matrices A and B are square matrices of same order.
22. (c)
23. (a) The given relation is $\mathrm{R}=\{(1,2),(2,3)\}$ in the set $\mathrm{A}=\{1,2,3\}$.
Now, R is reflexive, if $(1,1),(2,2),(3,3) \in R$.
R is symmetric, if $(2,1),(3,2) \in R$.
R is transitive, if $(1,3)$ and $(3,1) \in R$.
Thus, the minimum number of ordered pairs which are to be added, so that R becomes an equivalence relation, is 7 .
24. (a) The graph represents $x>-5$ and $x<5$. So, $|x|<5$.
25. (a)
26. (d) Since, $A=\left|\begin{array}{ccc}2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{array}\right|$

After expanding along R_{1}, we get
$|A|=2(6-5)-\lambda(-5)-3(-2)=5 \lambda+8$
As, A^{-1} exists, so $|A| \neq 0 \therefore 5 \lambda+8 \neq 0$
So, $\quad \lambda \neq \frac{-8}{5}$
27. (d) 28. (c) 29. (b)
30. (d) $\quad \operatorname{Here} \mathrm{AA}^{\mathrm{T}}=\left(\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right)\left(\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right) \neq\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\mathrm{BB}^{\mathrm{T}}\right)_{11}=(4)^{2}+(1)^{2} \neq 1$
$(\mathrm{AB})_{11}=8-7=1,(\mathrm{BA})_{11}=8-7=1$
$\therefore \mathrm{AB} \neq \mathrm{BA}$ may be not true.

Now, $A B=\left(\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right)\left(\begin{array}{ll}4 & 1 \\ 7 & 2\end{array}\right)$

$$
=\left(\begin{array}{cc}
8-7 & 2-2 \\
-28+28 & -7+8
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) ;(\mathrm{AB})^{\mathrm{T}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

31. (a) Let R be a relation containing $(1,2)$ and $(1,3)$ R is reflexive, if $(1,1),(2,2),(3,3) \in R$.
Relation R is symmetric, $\operatorname{if}(2,1) \in R$ but $(3,1) \notin R$.
But relation R is not transitive as $(3,1),(1,2) \in R$ but $(3,2) \notin \mathrm{R}$.
Now, if we add the pair $(3,2)$ and $(2,3)$ to relation R, then relation R will become transitive.
Hence, the total number of desired relations is one.
32. (d) It is given that A and B are invertible matrices

So, $\quad A^{-1}=\frac{\operatorname{adj} A}{|A|} \therefore \operatorname{adj} \mathrm{A}=|\mathrm{A}| . \mathrm{A}^{-1}$
Now, $\quad \operatorname{det}(\mathrm{A})^{-1}=[\operatorname{det}(\mathrm{A})]^{-1}$ and $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$ and $(A+B)^{-1} \neq B^{-1}+A^{-1}$
33. (d) $\frac{d x}{d \theta}=-a \sin \theta$ and $\frac{d y}{d \theta}=a \cos \theta$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=-\cot \theta$.
\therefore the slope of the normal at $\theta=\tan \theta$
\therefore the equation of the normal at θ is
$y-a \sin \theta=\tan \theta(x-a-a \cos \theta)$
$\Rightarrow y \cos \theta-a \sin \theta \cos \theta=x \sin \theta-a \sin \theta-a \sin \theta \cos \theta$
$\Rightarrow \mathrm{x} \sin \theta-\mathrm{y} \cos \theta=\mathrm{a} \sin \theta$
$\Rightarrow y=(x-a) \tan \theta$
which always passes through $(\mathrm{a}, 0)$
34. (b) Now $\mathrm{A}+\mathrm{A}^{\prime}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]+\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
2 \cos \alpha & 0 \\
0 & 2 \cos \alpha
\end{array}\right]=\mathrm{I}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\therefore & 2 \cos \alpha=1 \Rightarrow \cos \alpha=\frac{1}{2} \Rightarrow \alpha=\frac{\pi}{3}
\end{aligned}
$$

Thus option (b) is correct.
35. (a)
36. (b)
37. (c)
38. (b)
39. (c)
40. (b) $\left(A-A^{T}\right)^{T}=A^{T}-\left(A^{T}\right)^{T}=A^{T}-A=-\left(A-A^{T}\right)$

Hence, $\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)$ is skew-symmetric.
41. (c)
42. (b)
43. (a)
44. (a)
45. (c)
46. (b)
47. (a)
48. (c)
49. (a)
50. (d)

